
Energy release rate along any crack front in the thickness
direction of shell elements

X.Z. Suoa,*, M.P. Valetab, B. Drubayb, B. Martelet c, H. Deschanelsd

aEUROSIM SARL, Centre d'A�aires, 2 Rue de la Renaissance, 92160 Antony, Cedex France
bCEA/DMT/SEMT/LAMS, 91191 Gif Sur Yvette, France

cEDF/SEPTEN, 12±14 Avenue DutrieÁvoz, 69628 Villeurbanne, France
dNOVATOME±FRAMATOME, 10 Rue Juliette ReÂcamier, 69006 Lyon, France

Received 31 July 1997; in revised form 30 March 1999

Abstract

This paper deals with a numerical method for calculating the pro®le of the energy release rate G (or J-integral)
along any crack front in the thickness direction of shell elements. For this purpose, the virtual crack extension
technique is ®rstly used for its average evaluation throughout the entire shell thickness. Secondly, local values for
points on the crack front are derived by assuming that the G parameter at any level in the shell's thickness direction

is linearly proportional to the strain energy density of points at the same level in the region where HRR singular
®elds are dominant. Example computations show that the G parameter pro®le by the present method is in good
agreement with that by alternative methods throughout a large range of elastic±plastic deformation. # 1999

Elsevier Science Ltd. All rights reserved.
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1. Introduction

When the material around a crack front undergoes a substantial amount of plastic ¯ow, it has become
common to characterize the static crack initiation and subsequent crack growth under monotonically
increasing deformation condition by using the energy release rate, G, (or the J-integral). It is, therefore,
important to have access to techniques for calculating this fracture parameter under elastic±plastic con-
ditions for both 2D and 3D crack con®gurations. These techniques should be based on a solid conti-
nuum mechanics formulation, be su�ciently general to cover a variety of structure con®gurations, and
be relatively easy to use. Two di�erent methods presently widely mentioned in the literature satisfy these
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conditions. The ®rst of these is the J-integral method, which is based on a path independent surface

integral (line integral for 2D crack problems); the second is the virtual crack extension (or VCE)

technique introduced independently by Parks (1974) and Hellen (1975), which models the crack

extension by a small shift of node points in the ®nite element model.

For 3D cases in the presence of body forces or thermal loadings, the J-integral technique consists of

an integration over a surface around a particular point on the crack front, and also a volume

integration performed over the volume enclosed by the surface. In the ®nite element framework, this

integration surface is in general di�cult to de®ne and the surface integration is itself delicate to perform.

In contrast with the J-integral technique, the VCE method allows the energy release rate to be

computed, always by a volume integration, through a small computation e�ort. If a numerical analysis

is carried out by the ®nite element method, the volume integration formulation of the VCE method is

preferable to the surface integration formulation because the former is a natural extension of the volume

integrals already carried out in the ®nite element programs. For this reason, the VCE method has

received a wider attention in our research work (Suo and Combescure, 1992a) and, in the literature, a

great deal of e�ort has also been devoted both to its theoretical developments and numerical

applications (Haber and Koh, 1985; Parks, 1977; Ishikawa, 1980; Nikishkov and Atluri, 1987; Pryor et

al., 1970; Sha and Yang, 1985; Hellen, 1989). From the fact that the earlier formulations of the VCE

method were only based on a ®nite element approach (the resulting formula is hence written in ®nite

element matrix form), Destuynder and Djaoua (1981) and De Lorenzi (1982) have derived an explicit

3D analytical expression for the energy release rate by the application of the VCE principle to a

continuum mechanics model.

For crack geometries modeled by 3D solid elements, the virtual crack extensions are usually

conducted by a small node movement in the direction normal to the crack front. The pro®le of the

energy release rate along this line will be yielded by repeating such a movement node by node (Suo and

Combescure, 1992b). A movement of all these nodes together leads to a value which emerges as an

integration of the above G pro®le over the crack front, and may be regarded as an average evaluation of

the G parameter. When using shell elements for thin walled structures where the crack front is modeled

by a single node on structure's middle surface, the value deduced from the crack-tip movement is an

average one throughout the entire shell thickness. The traditional VCE method cannot provide the local

value of the G parameter at any particular level in the shell thickness, hence the pro®le of the energy

release rate, because of the absence of intermediate nodal points in this direction. In the case where the

membrane strain in the shell elements is preponderant, the energy release rate is nearly constant

throughout the entire crack front. Therefore, the knowledge of its average value would be representative

enough, as has been done in our earlier work (Suo and Combescure, 1992b). However, in the case where

shell elements are subjected to a substantial amount of bending strain, the G parameter varies in the

shell's thickness, so that an evaluations of the energy release rate pro®le all along the crack front should

be of great importance, even imperative, to determine where the stress singularities are strongest.

The aim of the present paper is to present a numerical method for calculating the pro®le of the energy

release rate (or the J-integral) along any crack front in the thickness direction of shell elements. For this

purpose, it is assumed that the energy release rate at any level in the crack front is linearly proportional

to the strain energy density of points at the same level in the region where HRR singular ®elds

(Hutchinson, 1968; Rice and Rosengren, 1968) are dominant. Firstly, the VCE method is used to

provide an average estimation of the energy release rate throughout the entire shell thickness. Secondly,

local values in the crack front are derived by means of an interpolation of the resulting average value

with a function representing the evolution of the strain energy density in the thickness direction of shell

elements. Example computations are presented in the ®nal section of the paper and compared against

reference solutions for an elastic and an elastic±plastic crack problems as well.
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2. Average energy release rate

An explicit 3D analytical expression for the energy release rate, G, was derived in the work by
Destuynder and Djaoua (1981) and independently in that by De Lorenzi (1982) for linear elastic
materials and for materials following the deformation theory of plasticity, respectively. In the absence of
surface tractions on the crack faces and thermal loadings, it was found to be:

DAG �
�
O

Tr�srUrY�dOÿ 1

2

�
O
w div Y dO: �1�

In this expression, DA is the increase in cracked area generated by a small node movement, O is the
volume of the cracked body, sij is the stress tensor, Ui is the displacement vector and w is the strain
energy density. `Tr' denotes trace operation for tensors and Y is a mapping function which maps the
body containing the crack into a body with a slightly increased crack length. In the calculations of the
energy release rate by Eq. (1), a Cartesian coordinate system xi and the index notation with the
summation convention for repeated indices should be used.

If a shell analysis is performed by the ®nite element method, the above formula for the energy release
rate has to be put into the ®nite element framework. Usually, the formulations of shell elements are
carried out by using the generalized Kirchho� hypothesis which states that:

points in a shell originally on the normal to the undeformed middle surface remain on a straight line, but
which is not necessarily yet normal to the deformed middle surface.

Under the hypothesis of small displacement and small strain, this allows us to write the displacement
components of a point in the local Cartesian coordinate system (x, y, z ) of the shell elements as follows:

U � Ux�x, y, 0� � zbx�x, y�,

V � Uy�x, y, 0� � zby�x, y�,

W � Uz�x, y�

where the x±y plane represents the shell's middle surface, z the axis in the thickness direction of the shell
elements, orthogonal to the middle surface x±y. Ux and Uy are membrane displacement components in
the x-axis and y-axis directions, bx, and by are two rotations of the normal to the undeformed middle
surface in the x±z and y±z planes, Uz is the transversal displacement in the z-axis direction. In the
analyses of shell elements including the transverse shear energy, the strain is divided into three terms:
membrane strain, em, bending strain, e b and transversal shear strain, e s, which are written in vector
form as follows:

em �
�
@Ux

@x

@Uy

@y

@Ux

@y
� @Uy

@x

�T

,

eb � zk with k �
�
@bx
@x

@by
@y

@bx
@y
� @by
@x

�T
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es �
�
bx �

@Uz

@x
by �

@Uz

@y

�T

,

with `T' denoting transpose. In elasticity, these strain ®elds are connected to the membrane stress, sm,
bending stress, s b and transversal shear stress, s s, by:

sm � Dem,

ss � Dses,

sb � zDk, �2�
where D is the elastic constitutive matrix and Ds is the elastic shear matrix. In shell element calculations,
the total membrane force, N, shear force, T, and bending moment, M, obtained through an integration
of the above stresses over the shell thickness are often more representative:

N � esm � eDem,

T � ess � eDses,

M � e3

12z
sb � e3

12
Dk, �3�

where e is the shell's thickness.
With the de®nition of the mapping function (Destuynder and Djaoua, 1981; De Lorenzi, 1982; Suo

and Combescure, 1992b) and, particularly for an average evaluation of the energy release rate, it is
reasonable to assume that the displacement vector Y does not vary in the z-axis thickness direction of
shell elements, namely in the local Cartesian coordinate system (x, y, z ) we have:

Yx � Yx�x, y�,

Yy � Yy�x, y�,

Yx � 0:

This assumption allows the two integrals in the right hand side of Eq. (1) to be explicited in term of
the displacement and e�ort components in shell elements:

DAG1 � 1

2

�
S

Tr�srU�div Y dO � 1

2

�
S

�NTem � TTes �MTk�div Y dS, �4�

DAG2 �
�
S

Tr�srYrU�dO �
�
S

�NTem�U, Y� � TTes�U, Y� �MTk�U, Y��dS, �5�

where integrations should be carried out in the local coordinate system of each element. In the above
expressions, S is the surface of the middle plane, em(U, Y ), e c(U, Y ) and k(U, Y) are the membrane,
transversal shear and bending strains associated with the mapping Y. They are written as:
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em�U, Y� �
24Ux,xYx,x �Ux,yYy,x

Uy,xYx,y �Uy,yYy,y

Ux,xYx,y �Ux,yYy,y �Uy,xYx,x �Uy,yYy,x

35,

es�U, Y� �
�
Uz,xYx,x �Uz,yYy,x

Uz,xYx,y �Uz,yYy,y

�
,

k�U, Y� �
24 bx,xYx,x � bx,yYy,x

by,xYx,y � by,yYy,y

bx,xYx,y � bx,yYy,y � by,xYx,x � by,yYy,x

35:
By using the divergence theorem, it may be shown that the average energy release rate computed by

the sum of Eqs. (4) and (5) is identical to the 2D plane stress line independent J-integral. This means
that the G parameter is itself independent of the displacement vector Y when the latter is directed to the
crack-axis direction (Suo and Combescure, 1992b).

3. Energy release rate along the crack front

For calculating the energy release rate at any particular level in the thickness direction of shell
elements, it is convenient to use the results that we can deduce immediately from the HRR singular
®elds of stress and strain in the neighborhood of the crack tip. For materials following the deformation
theory of plasticity, they were found to be (Hutchinson, 1968; Rice and Rosengren, 1968):

sij
sy
�r, y� �

 
JE

Ias2ya

!1=�n�1�
~sij�y�

�r=a�1=�n�1� ,

eij
ey
�r, y� � a

 
JE

Ias2ya

!n=�n�1�
~eij�y�

�r=a�n=�n�1� ,

where n and a are the work hardening exponent and the yield o�set, introduced in the Ramberg±
Osgood s±e relationship, I is a dimensionless parameter depending only on n, a is the crack length, E is
the Young's modulus, (r, y ) are cylindrical coordinates of points in a crack-tip coordinate system, and
are two functions of angle y. The strain energy density is, therefore, simply:

w � sijeij � ~sij�y�~eij�y�
Ir

J � lJ,

with

l � ~sij�y�~eij�y�
Ir

: �6�

For shell elements, it seems reasonable to assume that the factor l in Eq. (6) is independent of the
coordinate z in the thickness direction. This hypothesis leads to the conclusion that the energy release
rate (or the J-integral) at any level in the crack front is linearly proportional to the strain energy density
w of points at the same level in the HRR-®eld controlled region. Physically, this means that the
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behaviour of cracks in a thin structure is govened directly by the strain energy density. The possible
growth of a crack front will happen at the point where the strain energy density is strongest.

In elasticity, the energy release rate should be a quadratic function over the thickness of the shell
element since both stress and strain vary linearly in such a direction. This implies that, in elasticity, we
can write:

G�z� �
"
A

�
z

e

�2

�B
�
z

e

�
� C

#
G, �7�

where G is the average energy release rate over the whole crack front and calculated by the sum of Eqs.
(4) and (5), A, B and C are three dimensionalless constants to be determined below. Let the strain
energy density on the shell's middle plane, top and bottom surfaces be represented, respectively, by w0,
w1 and w2. Note that at any level, z, in the shell's thickness, the strain energy dentity w(z ) may be
computed by a simple product of stress and strain, giving:

w�z� �
�

N

e
� 12Mz

e3

�
�em � zk� � T

e
es: �8�

The proportional assumption introduced previously permits to write:

1

4
A� 1

2
B� C � C

w1

w0
, �9�

1

4
Aÿ 1

2
B� C � C

w2

w0
: �10�

In addition, since the energy release rate is a linear function of the mapping vector Y which is, itself,
assumed to be constant in the thickness direction, an integration of the G pro®le Eq. (7) over the
element thickness must lead to the average energy release rate, G, throughout the whole crack front,
namely:��e=2

ÿe=2
G�z�dz � eG: �11�

Substituting Eq. (7) into Eq. (11) gives another equality:

1

12
A� C � 1: �12�

By resolving Eqs. (9), (10) and (12), the constants A, B and C are found to be:

A � 12

w1

w0
� w2

w0
ÿ 2

w1

w0
� w2

w0
� 4

, �13�

B � 6

w1

w0
ÿ w2

w0
w1

w0
� w2

w0
� 4

�14�
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C � 6
w0

w1
� w0

w2
� 4

: �15�

By substituting the constants A, B and C into Eq. (7), it follows the energy release rate pro®le along
the crack front in the thickness direction of shell elements:

G�z� � 6G
w1

w0
� w2

w0
� 4

"
2

�
w1

w0
� w2

w0
ÿ 2

�
z2

e2
�
�
w1

w0
ÿ w2

w0

�
z

e
� 1

#
: �16�

Again, it should be emphasized that the calculations of the strain energy densities by Eq. (8) for w0

with z = 0, for w1 with z=e/2 and for w2 with z=ÿe/2 have to be performed for points in the HRR-
®eld controlled region near the crack tip.

Almost all thin plate/shell models developed in the literature accept the normal or generalized
Kirchho� hypothesis, i.e. a linear strain variation in the thickness direction of shell elements both for
linear elastic materials and elastic±plastic materials as well. However, in the latter case, stress varies non
linearly in such a direction, following the material's stress±strain curve. For instance, the energy release
rate of materials of the Ramberg±Osgood type having n as its work hardening exponent should vary
non linearly according to a power function of (n + 1) order. It is clear that if a polynomial function is
always introduced in this case for an exact evaluation of the energy release rate, we have to ®nd (n + 2)
constants rather than 3 in the preceding elasticity situation. To simplify calculations and, particularly,
for the assessment of a technique covering a wider class of non linear material models, it seems more
advantageous to approximate the energy release rate pro®le by means of a strain energy density w(z ) at
some ®nite levels in shell's thickness. More clearly, since Eq. (11) is pertinent in linear elasticity as well
as in elastic±plasticity, substituting Eq. (6) into Eq. (11) yields:

G�z� � eGw�z���e=2
ÿe=2

w�z�dz
: �17�

In elastic±plasticity, two di�erent approachs are available to determine the strain energy density at
any particular level in the thickness of shell elements. The ®rst of these is the numerical integration
method in the shell's thickness (Batoz and Dhatt, 1990) which allows the strain and stress at any
speci®ed levels in the thickness to be computed through a small calculation e�ort. The second is the
multi-layer element model used in this paper for the example calculations, which requires just a single
element in the HRR-®eld controlled region being modeled with (2N + 1) layers having equal and
su�ciently slim thickness (see Fig. 1).

A brief presentation of such an element model is given below, proving that the use of Eq. (17) may
lead to results very close to those by Eq. (16) in elasticity. Also, such a demonstration provides a
numerical process of the use of Eq. (17) in elasto±plastic cases. For this purpose, let each layer in Fig. 1
be characterized by a very small thickness ei (identical for all layers) and an eccentricity li. The
displacement in a particular layer i is divided into two distinct parts:

U m
i � Ux�x, y� � libx�x, y�,

V m
i � Uy�x, y, 0� � liby�x, y�

W m
i � 0,
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for the membrane displacement components in the shell's middle surface and

U f
i � �zÿ li �bx�x, y�,

V f
i � �zÿ li �by�x, y�,

W f
i � Uz�x, y�,

for the displacement components due to the normal vector rotations with respect to the undeformed
middle surface. Also, the strain in the layer i is divided into membrane strain, em

i , bending strain, eb
i and

transversal shear strain, es
i :

em
i � em � lik,

eb
i � �zÿ li �k,

es
i � es: �18�

In elasticity, the corresponding membrane stress, sm
i , bending stress, sb

i and the shear stress, ss
i , are

respectively:

sm
i � Dem

i ,

sb
i � Deb

i ,

ss
i � Dses

i : �19�
Similarly, the total membrane forces, Ni, transversal shear forces, Ti, and bending moments, Mi, with

respect to the middle surface of each individual layer i may be derived by means of an integration of the

Fig. 1. Multi-layer model for a single element in the HRR-®eld controlled region.
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above stresses over the thickness ei:

Ni �
�li�ei=2
liÿei=2

ÿ
sm
i � sb

i

�
dz � eiDem � eiDlik, �20�

Mi �
�li�ei=2
liÿei=2

�zÿ li �
ÿ
sm
i � sb

i

�
dz � e3i

12
Dk, �21�

Ti �
�li�ei=2
liÿei=2

ss
i dz � eiD

ses: �22�

The total strain energy, W(li ), at layer i is computed by:

W�li � �
�li�ei=2
liÿei=2

siei dz:

By substituting Eqs. (18) and (19) into the right hand side of the above equation, we easily obtain

W�li � � Niem
i � Ties �Mik: �23�

Alternatively, since the thickness of all layers is very small compared to the total shell thickness (ei/
e<<1), the eccentricity li may be regarded here as the z coordinate of points in the thickness. It follows
that in elasticity, Eq. (23) may also be written as:

W�li � � ei

��
N

e
� 12Mz

e3

�
�em � zk� � T

e
es

�
� e3i

e3
Mk: �24�

Since ei/e<<1, the contribution of the bending moment M in the last term of Eq. (24) may be ignored
so that we can replace the energy density w(z ) in Eq. (17) by, approximately, the total strain energy
W(z ):

G�z� � eGw�z���e=2
ÿe=2

w�z�dz
� eGW�li ���e=2

ÿe=2
W�li �dz

: �25�

Eq. (25) is true only if all layers have the same thickness ei. It is worthwhile to point out that the
calculations with Eq. (23) or Eq. (24) in elasticity have to be repeated for all layers in the element in
order to establish (2N+ 1) one-to-one relationships between W(li ) and the z coordinate (replaced here
by the layer's eccentricity li ). The second denominator in Eq. (25) is then replaced approximately by the
area below the W(li )±z curve composed of 2N piece-wise straight lines. Numerically, this area may be
computed without any particular di�culties by using, for instance, the trapeze integration method. Of
course, the number of multi-layers in the element must be enough to guarantee that the resulting area is
su�ciently close to that below the theoretical smooth W(li )±z curve. Compared to the average energy
release rate by the classic VCE method (Suo and Combescure, 1992b), the proposed method should not
make the computation e�ort much heavier since the multi-layer model is built for a single element
alone.

In the ®nite element applications, three matrices, �Bm
i �, �Bb

i � and �Bs
i �, are commonly introduced which

connect, respectively, the membrane strain, em
i , the bending strain, eb

i and the transversal shear strain, es
i ,

of each individual layer to the nodal displacement [U]:
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em
i �

�
Bm
i

��U�,
eb
i �

�
Bb
i

��U�,
es
i �

�
Bs
i

��U�: �26�
The individual sti�ness matrix [Ki ] is simply:

�Ki � �
�
A

�
ei
�
Bm
i

�T�D��Bm
i

�� e3i
12

�
Bb
i

�T�D��Bb
i

�� ei
�
Bs
i

�T�D��Bs
i

��
dA: �27�

Then, the nodal displacement resolution may be accomplished by a normal run with the master
sti�ness matrix assembled from each individual sti�ness matrix.

The numerical process described above aims at a linear elastic case. It is seen that each individual
layer behaves as an independent entity so that we can treat the layers in Fig. 1 as independent elements
in the direction of shell thickness. Also, experience gained in program writing show that subroutines
used in elastic±plasticity for normal mono-layer shell elements remain almost totally suitable for the
multi-layer element model without any major modi®cations. However, in non linear material cases, the
quantity W(li ) must be integrated over the applied loading history in order to deduce the strain energy
of layer i at a given time. Numerically, this is usually done with the rapeze integration method:

W�li � �
�t
0

W�li, t�dt � 1

2

Xj�t�
j�0

�li�ei=2
liÿei=2

�siei �j�1 ÿ
�li�ei=2
liÿei=2

�siei �j:

The elastic±plastic applications of the multi-layer shell element model will not be discussed more
profoundly because it is not the main object of the present paper. The Reader may refer to any ®nite
element books for more information about this subject.

4. Numerical illustrations

To benchmark the method described in the preceding sections, the J-integral pro®le along the crack
front was computed for a through-wall ¯awed plate problem in elasticity as well as in elastic±plasticity
using the CASTEM2000 ®nite element system. Mainly, the analyses were performed with COQ8 shell
elements, including transverse shear e�ects (eight nodal points and eight integration points for each
element). Computed solutions were compared either against the analytical solutions, or against those
deduced from a 3D brick element model by using the classic VCE method, namely the node-by-node
extensions of all nodal points on the crack front. All calculations were carried out in double precision
on a Silicon Indigo-2 computer.

4.1. Elastic through-wall ¯awed plate subjected to remote tension

Fig. 2 shows the thin plate containing a through-wall crack with total length of 2a (35 mm). e (28 mm) is
the plate thickness, 2W (140 mm) the total plate width, 2L (280 mm) the total plate length. The remaining
ligament on each side of the crack is (Wÿa ). Firstly, the loading is considered to be due to a pure
membrane tension, F, uniformly applied at the ends in such a manner that an equal stress, 10 Mpa, is
obtained throughout the whole plate transversal section. The membrane tension F itself is therefore:

F � 2We� 10 � 3:92� 104 N:

X.Z. Suo et al. / International Journal of Solids and Structures 37 (2000) 835±856844



In elasticity, the material is characterized by Young's modulus E (2 � 105 Mpa) and by Poisson's
coe�cient n (0.3). Owing to symmetry reasons, only a quarter of the plate was analyzed. The ®nite
element model is built with 465 eight-noded shell elements and 1430 nodal points (see Fig. 3). In
calculations, symmetry boundary conditions were made on the symmetry faces and the membrane-
tension-applied faces were simply locked in the thickness direction of the plate. Analytical solution for
the J-integral has been found to be (Isida, 1955):

J � 1

E
s2paf 2

�
a

W
,
L

W

�
:

Following Isida (1955), the factor f for this problem equals 1.04, hence J = 2.973 � 10ÿ2 N/mm.
Under pure membrane tension, the G parameter is constant throughout the whole transversal section.

This point should be veri®ed by the method presented in the paper. On the other hand, the G parameter
calculations require the selection of an element row surrounding the crack tip, in which the Y mapping
vector varies gradually. The fact that the J line integral is independent of integration paths implies that
the G parameter is itself independent of the Y mapping vector. It is possible to de®ne several element
rows and all these selections should, theoretically, lead to the same G pro®le along the crack front.
However, in numerical analysis, there will always be some scatter in the results. In order to illustrate the
independence of the computed G pro®le with respect to the Y vector, eight element rows the closest to
the crack tip were selected with number 1 denoting the ®rst element row, 2 the second element row and

Fig. 2. Flawed plate subjected to a pure membrane tension.

Fig. 3. Shell element model for the G pro®le calculations by the presented method.
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so on. Computed G pro®les along the crack front from Eq. (16) are summarized in Fig. 4. It is shown
that the G parameter is e�ectively constant in the plate's thickness direction. Furthermore, the obtained
values are in very good agreement with the analytical solution and the G pro®le is highly independent of
the mapping vectors, with a relative undulation of less than 0.1 percent between the 1st and 8th element
rows.

4.2. Elastic through-wall ¯awed plate subjected to bending moment

Fig. 5 shows the same plate problem as considered obviously. But the loading is due to a pure
bending moment, Melastic, uniformly applied at ends in such a manner that the maximal compressive
stress, ÿsmax, on the top surface and the maximal tension stress, smax, on the bottom surface of the
plate reach 10 MPa. The bending moment itself is therefore:

Melastic � We2smax

3
� 1:829� 105 N�mm:

For the purpose of comparison, the classic node-by-node VCE method is applied to a 3D brick
element model. Fig. 6 depicts the ®nite element mesh, which is built with 3720 eight-noded brick
elements and 4347 nodal points. This 3D brick element model is composed of eight equal-thickness
layers, having the same mesh density in the x±y plane for each one as that used in the shell model (Fig.
3).

Computed G pro®les along the crack front from Eq. (16) are summarized in Fig. 7 for the eight
element rows closest to the crack tip. Again, it is shown that, in elasticity, the G pro®le is highly stable
with a relative numerical undulation less than 0.1 percent when di�erent mapping vectors are used.
Comparisons of results by the shell and 3D brick element models are also conducted in Table 1, in
which only solutions by the 8th element row for the Y vector are given. There is a signi®cant shift in the

Fig. 4. J-integral pro®le (N/mm) by Eq. (16) along the crack front (mm) for the plate subjected to a pure membrane tension.
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shell solution when compared to the 3D solution near the free edges. This is perhaps due to the plane
stress type of behaviour near the free 3D surface, but plane strain type of behaviour near the core in
thick plate/shell structures.

Negative values in Fig. 7 and in Table 1 indicate that under the pure bending moment, the superior
half part of the crack (compressive side) is in shutting mode, only its inferior half part (tension side) is
in opening mode. Normally, the method presented obviously cannot determine whether the crack is in
shutting or in opening mode, since the strain energy density is always positive. In this illustrative
example, negative signs were added afterwards. According to the results illustrated in Fig. 7 or in Table
1, it is concluded that the J-integral pro®le along the crack front in the thickness direction by the
present method is very close to that by the 3D solid brick elements using the classic node-by-node VCE
technique. Numerical scatter is less than 5 percent, except for those on the top and bottom surfaces,
probably due to the boundary e�ect of the problem with the 3D brick elements. As an indication, we
note that by the classic VCE method, the average value of the J-integral throughout the entire shell
thickness equals 6.31 � 10ÿ3 N/mm, much less than the maximal value on the bottom surface of the

Fig. 5. Flawed plate subjected to a pure bending moment.

Fig. 6. 3D brick element model for the G pro®le calculations by the classic node-by-node VCE method.
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plate (1.875 � 10ÿ2 N/mm). This disagreement shows that an accurate evaluation of the J-integral at
di�erent levels on the crack front should be more desirable than a simple average evaluation,
particularly in the cases where shell elements are subjected to a great deal of bending strain.

The calculations of the J-integral pro®le by the approximate formula (17) requires the selection of a
shell element situated in crack's HRR-®eld controlled region, in which the multi-layer model will be
established. Also, it requires the selection of a multi-layer number in such an element in order to
determine the strain energy density evaluation over the whole transversal section. Taking a shell element
situated in the ®rst element row surrounding the crack tip, the J-integral on the bottom surface

Fig. 7. J-integral pro®le (N/mm) by Eq. (16) along the crack front (mm) for the plate subjected to a pure bending moment.

Table 1

J-integral for some particular points on the crack front by Eq. (16)

Coordinate z of points on the crack front J-integral pro®le by shell elements J-integral pro®le by 3D brick elements

ÿ1.40000E+01 1.87482Eÿ02 1.53954Eÿ02
ÿ1.05000E+01 1.05813Eÿ02 1.06228Eÿ02
ÿ7.00000E+00 4.72733Eÿ03 4.84312Eÿ03
ÿ3.50000E+00 1.28931Eÿ03 1.35377Eÿ03
0. (middle plane) 8.13548Eÿ05 1.94906Eÿ04
3.50000E+00 ÿ1.28932Eÿ03 ÿ1.35377Eÿ03
7.00000E+00 ÿ4.72735Eÿ03 4.84312Eÿ03
1.05000E+0l ÿ1.05813Eÿ02 1.06228Eÿ02
1.40000E+01 ÿ1.87482Eÿ02 ÿ1.53954Eÿ02
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(z=ÿ14 mm) of the plate computed by a series of di�erent multi-layer numbers are summarized in
Table 2.

It is clearly seen that the J-integral pro®le or, more exactly, the area under the w(z )±z curve
composed of several piece-wise straight lines, becomes very independent of the multi-layer number when
the latter is superior to 21. Nine multi-layers is somewhat the minimal number which leads to a scatter
of about 3 percent when comparing its solution against the exact J value (1.875 � 10ÿ2 N/mm) by Eq.
(16).

Fig. 9 plots four J-integral solutions along the crack front which were obtained with a shell element

Fig. 8. Four di�erent multi-layer-support elements in the HRR-®eld controlled region.

Table 2

J-integral (N/mm) on the bottom surface of the plate versus the number of multi-layers by Eq. (17)

Number of multi-layers J-integral on the bottom surface of the plate (N/mm)

3 1.25577Eÿ02
5 1.66950Eÿ02
7 1.77801Eÿ02
9 1.81939Eÿ02
11 1.83920Eÿ02
15 1.85681Eÿ02
21 1.86630Eÿ02
27 1.87005Eÿ02
33 1.87190Eÿ02
39 1.87295Eÿ02
45 1.87360Eÿ02
51 1.87403Eÿ02
65 1.87461Eÿ02
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containing 21 multi-layers and located, respectively, in the ®rst, second, third and fourth element row
surrounding the crack tip as depicted in Fig. 8. The geometry center of these elements to the crack tip
is:

r

a
� 0:57 1:71 2:86 e 4:00% for crack length a � 17:5 mm:

In addition, the values of the J-integral in Fig. 9 on the bottom surface (z=ÿ14 mm) of the plate are
also listed in Table 3. It follows that the element supporting the multi-layer model in the ®rst, second
and third element row leads to almost a same value for the J-integral with a numerical disagreement less
than 3.5 percent. Clearly, in order to increase calculation accuracy it is preferable to de®ne a multi-
layer-support element which is, geometrically, neither too close to the crack tip nor too remote from it.
In the ®rst case, the strain and stress (hence the strain energy density) are in general computed with low
calculation accuracy. In the second case, the HRR singular ®elds used as a base of the proportional

Fig. 9. J-integral pro®le by the four di�erent multi-layer-support elements.

Table 3

J-integral (N/mm) on the bottom surface of the plate versus the distance of the multi-layer-support element to the crack tip r/a

Distance of the multi-layer elements to the crack tip r/a J-integral on plate's bottom surface (N/mm)

0.57% 1.86630Eÿ02
1.71% 1.82012Eÿ02
2.86% 1.80121Eÿ02
4.00% 1.77682Eÿ02
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hypothesis risk losing their applicability because they were obtained from asymptotical solutions. This
means that they are only available for points close enough to the crack tip. For the present problem, it
seems that the most stable solution was due to the multi-layer-support element in the second row of
shell elements.

4.3. Elastic±plastic through-wall ¯awed plate subjected to bending moment

In elastic±plasticity, the material behavior was modeled by the Ramberg±Osgood stress±strain
representation of the following form:

e
ey
� s

sy
� a

� s
sy

�n

,

where sy (400 Mpa) is a reference elastic stress, usually taken to be the yield stress, ey (2 � 10ÿ3) the
corresponding yield strain. Respectively, n (7.0) and a (1.0) are the material's work hardening exponent
and yield o�set.

The loading was always due to a pure bending moment, Mappl, increased monotonically so that the
material's mechanical response followed the deformation theory of plasticity. Again, results obtained by
the shell element model were compared against those by the 3D brick element model. At the end of the
calculations, the applied moment reached 80 times the elastic bending moment, Melastic

(1.829 � 105 Nmm), considered in the preceding elastic calculations. At the ®nal step, the plate was
nearly fully plasti®ed with an equivalent plastic strain at the crack tip region reaching 125 percent. Fig.
11 illustrates the evolution of the plasti®ed region in the plate versus the applied moment.

To illustrate the independence of the J-integral pro®le with respect to the mapping vector Y, the
computations by the shell element model were carried out using the same eight element rows the closest
to the crack tip as in elastic case. However, for the 3D brick element model the J-integral pro®le along
the crack front was derived using the 8th element row to support the vector Y alone. Comparison of
results by the two element models versus the applied bending moment is conducted in Fig. 12. It is seen
that the J-integral pro®le is highly independent of the mapping vector Y, representing a numerical
undulation less than 2 percent in the maximal loading case Mappl=80 Melastic. As the plasticity increases,
the G pro®le from the shell model becomes nearly linear. This is due to the fact that when the plate is
highly plasti®ed, the stress varies almost linearly along the crack front with the given stress±strain
relationship. The variation of both the strain energy density and, therefore, the G pro®le are linear along
this line.

The J-integral solutions on the bottom surface of the plate by the two ®nite element analysis are
plotted in Fig. 10 against the applied bending moment. We note that the J-integral comes from the
multi-layer shell element model is in very good agreement with the solutions of the 3D brick element
analysis throughout the whole range of elastic±plastic deformation. Such a comparison provides an
additional veri®cation of the calculation method of the J-integral pro®le along the crack front using the
multi-layer shell element developed in the present investigation.

5. Discussions and conclusions

A numerical approach is described in the present paper for calculating the energy release rate (or the
J-integral) along any crack front in the thickness direction of shell elements. For this purpose, it is
assumed that the energy release rate at any level in the crack front is linearly proportional to the strain
energy density of points at the same level in the region where HRR singular ®elds are dominant. In
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elastic±plasticity, the method requires the selection of a single shell element being modeled in multi-
layers to determine the strain energy density evolution throughout the whole transversal section. It is
recommended to select a multi-layer-support element which is, geometrically, neither too close to the
crack tip nor too remote from it and contains at least 21 equal-thickness slim layers for the purpose of
calculation accuracy. Illustrative examples were made for a through-wall ¯awed plate problem.
Computed J-integral results have been found to be highly independent of integration paths and have
been compared against those by a 3D brick element model using the classic node-by-node VCE method.
It was observed that the J-integral pro®le by the present method is in good agreement with that by the
3D brick ®nite element analysis throughout the entire range of elastic±plastic deformation.

The principle of the method may easily be extended for calculating other fracture characteristic
integrals like the C� or C(t ) integrals used in creep fracture problems (Landes and Begley, 1976; Riedel,
1981). In such a case, it su�ces to replace the strain energy density variation by the strain energy rate
density variation over the shell's thickness. Note that no particular assumptions have been made about
the crack's fracture mode. The method is hence suitable for cracks in pure I, II and III opening mode,
or in their mixed fracture mode. The use of the numerical process is, however, limited by the
applicability of the HRR singular ®elds (Hutchinson, 1968; Rice and Rosengren, 1968) with some
theoretical di�culties, as is well known in plane strain/stress problems. For computation accuracy, it is
recommended to model crack's singular region with ®ne and regular high order elements.

The multi-layer shell element model developed in this investigation can also conveniently be used for

Fig. 10. Comparison of the J-integral on the bottom surface of the plate versus the bending moment.
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Fig. 11. Evolution of the plasti®ed region versus the applied bending moment.
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Fig. 12. J-integral pro®le along the crack front versus the bending moment.
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the response of thin walled structures of composite materials without relative movement between
di�erent layers. In such a case, the master sti�ness matrix should be obtained by assembling that one of
all elements at each individual level since material's characteristics are distinct at di�erent levels. When
using this element model for crack problems, attention should be paid to cracks in closure mode because
of the inconsistency between Kirchho�'s hypothesis about the straight transverse line and the real
deformation. For instance, in the case of the plate under pure bending moment shown in our examples,
the inferior half part of the crack (tension side) is in opening mode, but its superior half part
(compressive side) is in shutting mode. Normally, unilateral contact conditions in the direction of middle
surface are necessary along the crack's compressive side for an accurate stress/strain analysis, so that
lines in the contact region cannot remain rigorously straight after the plate's deformation, as expected in
Kirchho�'s shell theory. However, it seems that the ignorance of these conditions has no signi®cant
e�ect on the stress/strain far from the crack-tip since the displacement in the plane of the elements due
to the crack closure is much less than the plate's transversal displacement. This is particularly true when
very thin plate is calculated. Such an ignorance was also justi®ed by a comparative calculation
performed for the 3D brick element model where very close results have been derived between the
analyses with and without the unilateral contact conditions.

When using multi-layer shell elements, the thickness of the structure is, in general, considerably less
than the structure's characteristic dimensions and a single nodal point su�ces to model the crack front.
For this reason, the latter has been reasonably assumed in our investigations to be a straight line and
normal to the middle surface. It has also been assumed to penetrate throughout the entire transversal
section. Otherwise, the proposed method will not be applicable any further and, in this case, we have to
use a 3D brick element model for calculating the J-integral pro®le along the crack front.
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